The correct options are
B √x2+y2=sin{tan−1(yx)+c} D y=xtan(c+sin−1√x2+y2)xdx+ydyxdy−ydx=√1−x2−y2x2+y2
The above differential equation can be re-written as,
xdx+ydy√1−(x2+y2)=xdy−ydx√x2+y2.................(1)
∵d(tan−1(yx))=xdy−ydxx2+y2 and d(x2+y2)=2(xdx+ydy) .................(2)
multiplying both sides in the denominator of equation (1) with √(x2+y2)
we get, xdx+ydy√x2+y2√1−(x2+y2)=xdy−ydxx2+y2 ...........................(3)
From (2) and (3), we have
12d(x2+y2)√x2+y2√1−(x2+y2)=d(tan−1(yx))
Now, put x2+y2=t2 in the L.H.S. and we get,
12d(t2)t√(1−t2)=d(tan−1(yx))
⇒ tdtt√(1−t2)=d(tan−1(yx))
⇒ dt√(1−t2)=d(tan−1(yx))
Now integrating both the sides i.e.
∫dt√(1−t2)=∫d(tan−1(yx))
⇒ sin−1t=tan−1(yx)+C (where C is a constant)
Now, put the value of t, we get
C+sin−1(√x2+y2)=tan−1(yx)........(4)
⇒ y=xtan(C+sin−1(√x2+y2))
Hence, option (D) is correct.
Again re-writing equation (4),
sin−1(√x2+y2)=tan−1(yx)+C
⇒ √(x2+y2)=sin(tan−1(yx)+C)
Hence, option (A) is also correct.