The solution of the differential equation (dydx)2+2ycosxdydx−y2=0 is
A
y=−k(1+cosx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=−k(1−cosx)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y=k(1−cosx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ay=−k(1−cosx) From the given equation treating as a quadratic in dydx, we have dydx=−2ycotx±√4y2+cot2x+4y22 =y[−cotx±cosecx]dydx=y[−cotx+cosecx] or −y(cotx+cosecc) ⇒dyy=[cosecx−cotx]dx or −(cosecx+cotx)dx
Integrating,logy=logtanx2+logsinxlogk or −[logtanx2+logsinx]+logk logyk=logtanx2sinx=logtanx22sinx2cosx2=log12cos2x2 ∴y=k1+cosx The of other result gives yk=−sinxtanx2=−2sinx2cosx2.sinx2cosx2 or yk=−2sin2x2=x2−(1−cosx) or y=−k(1−cosx)