The correct option is A tany=12(x2−1)+ce−x2
Given, sec2ydydx+2xtany=x3
Let tany=v⇒sec2ydydx=dvdx
The given equation becomes
dvdx+2xv+x3
Now I.F.=e∫2xdx=ex2
Hence,the solution of the differential equation is
v.ex2=∫x3.ex2dx+c
Let x2−t⇒dt=2x.dx
⇒v.ex2=12∫tetdt+c=12et(t−1)+c
⇒v.ex2=12ex2(x2−1)+c
∴tany=12(x2−1)+ce−x2