The solution of the differential equation dydx+sin2y=0 is
y+2cosy=c
y-2siny=c
x=coty+c
y=cotx+c
Explanation for the correct option
Given: dydx+sin2y=0
⇒dydx=-sin2y⇒dy-sin2y=dx
integrating both sides
⇒∫-csc2ydy=∫dx⇒coty+c=x
Hence, option C is correct.