The solution of the differential equation dydx=x+yx satisfying the condition y(1)=1 is
y=xlogx+x
y=logx+x
y=xlogx+x2
y=xex-1
Explanation for correct options
Given: dydx=x+yx
⇒dydx=1+yx
Let xv=y
⇒xdvdx+v=dydx
xdvdx+v=1+v⇒dv=dxx
integrating both sides
⇒∫dv=∫dxx⇒v=log(x)+C
Put v=yx
⇒yx=log(x)+C⇒y=xlog(x)+Cx
Since dydx=x+yx passes through y(1)=1
Put x=1,y=1
⇒1=1log(1)+C×1⇒C=1
⇒y=xlog(x)+x
Hence, option A is correct.