The solution of the differential equation dydx=xy+yxy+xis
x+y=logcyx
x+y=logcxy
x-y=logcxy
y-x=logcxy
Explanation of the correct option.
Compute the required value.
Given : dydx=xy+yxy+x
⇒ dydx=y(1+x)x(1+y)
⇒(1+y)ydy=(1+x)xdx
⇒1y+1dy=1x+1dx
Now, Integrate both sides.
⇒ logy+y=logx+x+logC
⇒ logyx=x-y+logC
⇒ y-x=log(C)-logyx
⇒ y-x=logcxy
Hence option D is the correct option.