The solution of the differential equation dydx=ytanx-2sinx is
ysinx=c+sin2x
ycosx=c+12sin2x
ycosx=c-sin2x
ycosx=c+12cos2x
Explanation of the correct option.
Compute the required value.
Given : dydx=ytanx-2sinx
⇒dydx-ytanx=-2sinx……………1
Compare the equation with L.D.E. dydx+Py=Q,
P=-tanx and Q=-2sinx
I.F.=e∫Pdx=e-∫tanxdx=e-logsecx=cosx
Since the solution of L.D.E. is given by y(I.F.)=∫Qdx.
y.cosx=-∫sin2xdx+c⇒y.cosx=cos2x2+c ∫sinx=-cosx
Hence, option D is the correct option.