wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the differential equation dydx+1=ex + y, is
(a) (x + y) ex + y = 0
(b) (x + C) ex + y = 0
(c) (x − C) ex + y = 1
(d) (x − C) ex + y + 1 =0

Open in App
Solution

(d) (x − C) ex + y + 1 = 0


We have,dydx+1=ex+yLet x+y=v1+dydx=dvdxdydx+1=dvdx dvdx=eve-vdv=dxIntegrating both sides, we get-e-v=x-C-1=evx-Cx-Cex+y+1=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Equations Reducible to Standard Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon