The correct option is A ex2(y2−1)+ey2=C
y2=t; 2ydydx=dtdx;
Hence, the differential equation becomes
(ex2+et)dtdx+2ex2(xt−x)=0
or ex2+et+2ex2x(t−1)dxdt=0
Put ex2=z. Then
ex22xdxdt=dzdt
or z+et+dzdt(t−1)=0
or dzdt+z(t−1)=−et(t−1); I.F. =e∫dtt−1=eln(t−1)=t−1
or z(t−1)=−∫(et)dt
or z(t−1)=−et+C
or ex2(y2−1)=−ey2+C
or ex2(y2−1)+ey2=C