The correct option is A y+logy+excos2x=2
We have,
e−x(y+1)dy+(cos2x−sin2x)ydx=0
⇒(y+1)ydy=−ex(cos2x−sin2x)dx
⇒(1+1y)dy=−ex(cos2x−sin2x)dx
On integrating both sides, we get
y+logy=−excos2x−∫exsin2xdx+∫exsin2xdx+C
⇒y+logy=−excos2x+C
Given, when x=0⇒y=1
⇒1+log1=−e0⋅cos20+C
⇒1+0=−1+C⇒C=2
Therefore, y+logy+excos2x=2