The solution of the differential equation dydx+3x21+x3 y=sin2 x1+x3 is
sin h−1(xy)+log y+c=0
dydx+3x21+x3 y=sin2 x1+x3P=3x21+x3⇒I.F.=e∫ p dx=elog(1+x3)=1+x3
Thus the solution is
y.(1+x3)=∫sin2 x1+x3(1+x3) dx=∫1−cos 2x2 dx⇒y(1+x3)=12 x−sin 2x4+c.