The solution of the differential equation dydx+3x21+x3y=sin2 x1+x3 is
y(1+x3)=x2−14 sin 2x+c
dydx+3x21+x3y=sin2 x1+x3
Here, P=3x21+x3⇒I.F=e∫P dx=elog(1+x3)=1+x3
Thus the solution is
y.(1+x3)=∫sin2 x1+x3(1+x3) dx=∫1−cos 2x2 dx
⇒y(1+x3)=12x−sin 2x4+c