The solution of the differential equation dydx+y2secx=tanx2y, where 0≤x≤π2, and y(0)=1, is given by:
A
y2=1+xsecx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=1−xsecx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=1+xsecx+tanx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y2=1−xsecx+tanx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dy2=1−xsecx+tanx dydx+y2secx=tanx2y ⇒2ydydx+y2secx=tanx Put y2=v⇒2ydydx=dvdx dvdx+vsecx=tanx I.F.=e∫secxdx =elog(secx+tanx)=secx+tanx The general solution is v(secx+tanx)=∫tanx(secx+tanx)dx ⇒y2(secx+tanx)=secx+tanx−x+C Given,y(0)=1⇒C=0 ∴y2=1−xsecx+tanx