The solution of the differential equation dydx=sec x (sec x+tan x) is
y = sec x + tan x + c.
y = sec x + cot x + c.
y = sec x - tan x + c
None of these
dydx=sec x(sec x+tan x)⇒dydx=sec2 x+sec x tan x Now integrating both sides, we get y = tan x + sec x + c.
The general solution of differential equation dydx+y sec x=tan x(0<x<π2) is