The correct option is B y3+Cy=x
Given, (x+2y3)dydx=y
⇒ydxdy=x+2y3
⇒dxdy−1yx=2y2
This is of the form dxdy+Px=Q
where, P=−1y and Q=2y2
Thus, the given equation is linear.
∴IF=e∫Pdy=e∫−1ydy=e−logy=elog(y)−1=y−1=1y
So, the required solution is
x⋅IF=∫(Q⋅IF)dy+C
⇒x⋅1y=∫(2y2⋅1y)dy+C
⇒x⋅1y=∫2ydy+C=y2+C
⇒x=y3+Cy.