wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the differential equation sec2xtanydx+sec2ytanx dy=0 is

A
tanxcoty=C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cotxtany=C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tanxtany=C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sinxcosy=C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B tanxtany=C
Given, sec2xtanydx+sec2ytanxdy=0

On separating the varaibales, we get

sec2xtanydx=sec2ytanxdy

sec2xtanxdx=sec2ytanydy

On integration both the sides, we get

sec2xtanxdx=sec2ytanydy

Let tanx=usec2x=dudx

dx=dusec2x and tany=v

sec2y=dvdy

dy=dvsec2y

sec2xudusec2x=sec2yvdvsec2y

duu=dvv

log|u|=log|v|+log|C|

log|tanx|=log|tany|+log|C|

log|tanxtany|=log|C|

(logm+logn=logmn)

(logm=lognm=n)

tanxtany=C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon