The solution of the differential equation log (dydx)=4x−2y−2, y = 1 when x = 1 is:
2e2y+2=e4x+e4
ln dydx=4x−2y−2
dydx=e4x−2y−2=e4xe2ye2
∴∫e2y dy=∫e4xe2dxe2y2=14e4xe2+c
For x=1, y=1
e22=14e4e2+c⇒c=14e2
∴12e2y=14e4x−2+14e2
or 2e2y=e4xe2+e2 or 2e2y+2=e4x+e4