The solution of the differential equation, x2dydx.cos1x=−1, where y→−1 as x→∞ is
Given,
x2dydx.cos1x=−1
⇒dy=1cos1x.−1x2dx
Let us assume 1x=t.
Therefore, −1x2dx=dt.
⇒dy=1costdt
⇒dy=sectdt
Integrating both sides, we get,
⇒∫dy=∫sectdt
⇒y=loge|sect+tant|+C
⇒y=loge∣∣∣sec1x+tan1x∣∣∣+C
Now, given that y→−1asx→∞
⇒limx→∞y=−1
⇒limx→∞(loge∣∣∣sec1x+tan1x∣∣∣+C)=−1
⇒(loge|sec0+tan0|+C)=−1
⇒C=−1.
Therefore, the solution of given differential equation is:
y=loge∣∣∣sec1x+tan1x∣∣∣−1.