The correct option is B x216(4logx−1)+Cx−2
Given differential equation can be written as
dydx+2yx=xlogx
Here, P=2x and Q=xlogx
∴IF=e∫Pdx=e2∫1xdx
=e2logx=elogx2=x2
∴ The general solution is
y×IF=∫Q×IF
⇒y×x2=∫×logx×x2dx+C
=∫x3logxdx
=logx×x44−∫[1x×x44]dx+C
=x44logx−∫x34dx+C
⇒x2y=x44logx−x416+C
⇒y=x216(4logx−1)+Cx−2.