The solution of the differential equation xdydx=y1+logx is :
xdydx=y1+logxdyy=dxx(1+logx)
Put t=logx
dtdx=1x⇒dt=dxx⇒dyy=dt1+t∫dyy=∫dt1+tlogy=log(1+t)+logClogy=logC(1+t)⇒y=C(1+t)
Substituting t
⇒y=C(1+logx)
So option E is correct.
The general solution of differential equation dydx=logx is