wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the differential equation xdydx=y+x tanyx, is
(a) sinxy=x+C

(b) sinyx=Cx

(c) sinxy=Cy

(d) sinyx=Cy

Open in App
Solution

(b) sinyx=Cx

We have,
xdydx=y+x tanyxdydx=yx+tanyx .....1Let y=vxdydx=v+xdvdxPutting the above value in 1, we getv+xdvdx=v+tan vxdvdx=tan vdvtan v=dxxIntegrating both sides, we getlog sin v= log x+log Clog sin v- log x=log Clogsin vx=log Csin vx=Csin v=Cxsinyx=Cx y=vx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon