The solution of the differential equation [y(1+x-1)+siny]dx+[x+logx+xcosy]dy=0 is
xy+ylogx=c
xy+xsiny=c
xy+ylogx+xsiny=c
None of these
The explanation for the correct answer.
Find the solution to the equation:
Given: [y(1+x-1)+siny]dx+[x+logx+xcosy]dy=0
Expand the given equation
⇒y+yx+sinydx+x+logx+xcosydy=0⇒ydx+yxdx+sinydx+xdy+logxdy+xcosydy=0⇒ydx+xdy+yxdx+logxdy+sinydx+xcosydy=0∵ydx+xdy=d(xy),yxdx+logxdy=dylogx,sinydx+xcosydy=dxsiny⇒d(xy)+dylogx+dxsiny=0
Integrate the above equation
⇒xy+ylogx+xsiny=C
Hence option C is the correct answer.