The correct option is D x3y6+3lnyx=c
The given differential equation can be written as:
y4dx+2xy3dy+1xy3(xdy−ydx)x2=0
⇒xy7dx+2x2y6dy+d(yx)=0
Multiplying both sides by xy, we get
xy⋅xy7dx+xy⋅2x2y6dy+xy.d(yx)=0
⇒13(3x2y6 dx+6x3y5dy)+d(yx)(yx)=0
⇒13(y6d(x3)+x3d(y6))+d(yx)(yx)=0
⇒13d(x3y6)+d(lnyx)=0
Integrating both sides we get,
⇒x3y6+3lnyx=c