The correct option is C √1−x2+√1−y2=c
y√1−x2dy+x√1−y2dx=0
Using variable separable,
y.dy√1−y2=−x.dx√1−x2
On integrating, ∫ydy√1−y2=−∫xdx√1−x2
Put 1−y2=u2 and 1−x2=v2
i.e., ydy=−udu and xdx=−vdv
so, ∫−uduu=−∫−vdvv
⇒−u=v+c
−√1−y2=√1−x2+c
or √1−x2+√1−y2=c