The correct option is A x=e
log2logx is meaningful if x>1
Since 4log2logx=(2log2logx)2=(logx)2 .......[∵alogax=x,a>0,a≠1]
So the given equation {4log2logx=logx−(logx)2+1} reduces to
2(logx)2−logx−1=0
⇒logx=1,logx=−12
But for x>1, logx>0
so logx=1 i.e., x=e
Ans: C