wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the equation 8sinx=3cosx+1sinx is/are given by

A

x=nπ+π6, nZ.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

x=nππ6, nZ.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

x=nπ2+π12, nZ.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

x=nπ2π12, nZ.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A
x=nπ+π6, nZ.
D
x=nπ2π12, nZ.
Here, the given equation:
8sinx=3cosx+1sinx
Now, we can write the equation as:
8sinx=3sinx+cosxsinx cosx8sin2xcosx=3sinx+cosx4(2sinxcosx)sinx= 3sinx+cosx4sin2xsinx=3sinx+cosx2(2sin2xsinx)= 3sinx+cosx2(cos(2xx)cos(2x+x)) =3sinx+cosx2cosx2cos3x =3sinx+cosxcosx2cos3x=3sinxcosx3sinx=2cos3xNow, dividing both sides by 2,we get12cosx32sinx=cos3xcosπ3cosxsinπ3sinx =cos3xcos(x+π3)=cos3xThus, the general solution of theabove equation can be given as:3x=2nπ±(x+π3), nZ.Now, taking positive sign, we get3x=2nπ+(x+π3), nZ.2x=2nπ+π3, nZ.x=nπ+π6, nZ.Also, taking negative sign, we get:3x=2nπ(x+π3), nZ.4x=2nππ3, nZ.x=nπ2π12, nZ.

flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon