wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the equation
1+(sinxcosx)sinπ4=2cos2(52x), which satisfy the condition sin6x<0 is x=tπ+kπ16;tϵz. Find the value of k.

Open in App
Solution

Given,
1+(sinxcosx)sinπ4=2cos2(52x)

sin(x)1212.cos(x)=2cos2(5x2)1

sinxsinπ4cosxcosπ4=2cos2(5x2)1
cos(x+π4)=cos(5x) ................ cos(a+b)=cosacosbsinasinb and [cos2x=1+cos2x2]
Now
sin6x<0
Hence
cos(x+π4)=cos5x
Or
cos(π+π4+x)=cos5x
cos(5π4+x)=cos5x
5π4+x=5x
4x=5π4
x=5π16.

Hence k=5.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon