The solution of the equation dydx=3x−4y−23x−4y−3 is:
A
(x−y)2+C=log(3x−4y+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x−y+C=log(3x−4y+4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x−y+C=log(3x−4y−3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x−y+C=log(3x−4y+1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Cx−y+C=log(3x−4y+1) Substitute 3x−4y=X⇒3−4dydx=dXdx ⇒dydx=14(3−dXdx) Therefore the given equation is reduced to 34−14dXdx=X−2X−3⇒−14dXdx=4X−8−3(X−3)4(X−3) ⇒−X−3X+1dx=dx⇒−(1−4X+1)dX=dx ⇒−X+4log(X+1)=x+ constant ⇒4log(3x−4y+1)=x+3x−4y+ constant ⇒log(3x−4y+1)=x−y+C