The correct option is C [−1,0)∪{1}
sin−1√1−x2+cos−1x=cot−1√1−x2x−sin−1x
For sin−1√1−x2 −1≤√1−x2≤1⇒x≤0 ...(1)
And for cos−1x−1≤x≤1 ...(2)
From (1) and (2)
xϵ{−1,0} ...(3)
Now,
sin−1√1−x2+cos−1x=cot−1√1−x2x−sin−1x⇒sin−1√1−x2+sin−1√1−x2=sin−1x−sin−1x
⇒2sin−1√1−x2=0⇒√1−x2=0⇒x=1 ...(4)
From (3) and (4)
xϵ{(−1,0)∪{1}}