wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the equation x2d2ydx2=logx when x=1,y=0anddydx=1is

A
y=12(logx)2+logx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=12(logx)2logx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=12(logx)2+logx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=12(logx)2logx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is C y=12(logx)2logx
x2d2ydx2=logx
d2ydx2=logxx2
d(dydx)=logxx2dx
Let logx=zx=ez
so, 1xdx=dz
so, intd(dydx)=zezdz
d(dydx)=zez(1)+ez(1)+c
d(dydx)=dydx=ez(z+1)+c
Now,
z=logx
so, dydx=elogx(logx+1)+c
dydx=1x(logx+1)+c
now, when x=1,dydx=1
so, 1=11(1)+c
so, c=0
so, dydx=(logxx+1x)
dy=(logxxdx)1xdx
so, y=12(logx)2logx+c
now, at x=1,y=0
so, o=12(0)20+c
c=0
so, y=12log2xlogx
Hence, the answer is y=12log2xlogx.



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon