The correct option is D |cy|=e−1x|x3|
xx∫0y(t)dt=(x+1)x∫0ty(t)dt, x>0
Differentiate w.r.t. x, we get
xy(x)+x∫0y(t)dt=(x+1)xy(x)+x∫0ty(t)dt
Again differentiating w.r.t. x, we get
xdydx+y(x)+y(x)=(2x+1)y(x)+(x2+x)dydx+xy(x)
⇒1−3xx2dx=dyy
Integrating both sides we get,
−1x−3ln|x|=ln|y|+ln|c|⇒|cy|=e−1x|x3|