The solution of the equation y-xdydx=ay2+dydx is
y=Cx+a1-ay
y=Cx+a1+ay
y=Cx-a1+ay
None of these.
The explanation for the correct option:
The given differential equation: y-xdydx=ay2+dydx.
⇒y-ay2=xdydx+adydx⇒y1-ay=dydxx+a⇒dyy1-ay=dxx+a⇒dyy+ady1-ay=dxx+a
Integrate both sides of the equation.
⇒∫dyy+ady1-ay=∫dxx+a⇒∫dyy+a∫dy1-ay=logx+a+C1C1=Integratingconstant⇒logy+a-alog1-ay=logx+a+C1⇒logy-log1-ay=logx+a+C1⇒logy1-ay=logx+a+logC[C1=logC]⇒logy1-ay=logCx+a⇒elogy1-ay=elogCx+a⇒y1-ay=Cx+a⇒y=Cx+a1-ay
Therefore, the solution of the equation y-xdydx=ay2+dydx is y=Cx+a1-ay.
Hence, option A is correct.