The correct option is A sin(3x−y)
Given DE is
∂2u∂x2=9∂2u∂y2 ... (i)
Let us verify the options
Option (a):u=sin(3x−y)
Then ∂u∂x=3cos(3x−y) and ∂2u∂x2=−9sin(3x−y)
∂u∂y=−cos(3x−y) and ∂2u∂y2=−sin(3x−y)
Hence, option (a) satisfies (1)
So it is the required solution.