The correct option is C (−3,1)∪(3,4)
24−2x−x214>0
⇒x2+2x−24<0
⇒x2+6x−4x−24<0
⇒x(x+6)−4(x+6)<0
⇒(x−4)(x+6)<0
⇒−6<x<4
CASE I : If 25−x216>1
⇒x2<9
⇒−3<x<3 ⋯(1)
24−2x−x214>25−x216
or x2+16x−17<0
⇒−17<x<1
∴ From (1),x∈(−3,1) ⋯(2)
CASE II:
0<25−x216<1
⇒9<x2<25
⇒−5<x<−3, or 3<x<5 ⋯(3)
24−2x−x214<25−x216
⇒x2+16x−17>0
⇒x<−17 or x>1 ⋯(4)
From (3) and (4),
3<x<5 ⋯(5)
But −6<x<4
∴ From (2) and (5), we get
x∈(−3,1)∪(3,4)