The correct option is D x∈(38,12)∪(1,32)
logx(2x−34)>2
log function is defined when
(i) x>0, x≠1
(ii) 2x−34>0⇒x>38
From (i) and (ii), we get
x∈(38,1)∪(1,∞) …(1)
Case 1: x∈(38,1) …(2)
logx(2x−34)>2
⇒2x−34<x2
⇒8x−3<4x2
⇒4x2−8x+3>0
⇒(2x−3)(2x−1)>0
⇒x∈(−∞,12)∪(32,∞) …(3)
Now, from (2)∩(3)
⇒x∈(38,12) …(4)
Case 2: x∈(1,∞) …(5)
logx(2x−34)>2
⇒2x−34>x2
⇒8x−3>4x2
⇒4x2−8x+3<0
⇒(2x−3)(2x−1)<0
⇒x∈(12,32) …(6)
Now, from (5)∩(6)
⇒x∈(1,32) …(7)
Now, (4)∪(7), gives
⇒x∈(38,12)∪(1,32)