The correct option is B 2x=3y=5z
Given
6x−9y−20z=−44x−15y+10z=−12x−3y−5z=−1
Changing in to matrix form,
AX=B⇒X=A−1B⋯(i)
Here,
A=⎡⎢⎣6−9−204−15102−3−5⎤⎥⎦,B=⎡⎢⎣−4−1−1⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦
Now,
|A|=−90
Cofactor matrix of A=⎡⎢⎣105401815100−390−140−54⎤⎥⎦
Now A−1=1|A|adj A=1|A|[ cofactor matrix of A ]T
=190⎡⎢⎣10515−3904010−140180−54⎤⎥⎦
From (i) we get,
X=A−1B=1−90⎡⎢⎣10515−3904010−140180−54⎤⎥⎦⎡⎢⎣−4−1−1⎤⎥⎦
=−190⎡⎢⎣−45−30−18⎤⎥⎦
=⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣121315⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
∴⎡⎢⎣xyz⎤⎥⎦=⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣121315⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
So x=12,y=13,z=15⇒2x=3y=5z=1