The correct option is B (2,1,3)
Let A=⎡⎢⎣1−1234−52−13⎤⎥⎦B=⎡⎢⎣7−512⎤⎥⎦X=⎡⎢⎣xyz⎤⎥⎦
|A|=∣∣
∣∣1−1234−52−13∣∣
∣∣=1(12−5)+1(9+10)+2(−3−8)
⇒|A|=7+19−22=26−22=4≠0
Now Cofactor matrix of A =⎡⎢⎣7−19−111−1−1−3117⎤⎥⎦
∴adjA=⎡⎢⎣7−19−111−1−1−3117⎤⎥⎦T=⎡⎢⎣71−3−19−111−11−17⎤⎥⎦
∴A−1=adj A|A|=14⎡⎢⎣713−19−111−11−17⎤⎥⎦
∴X=A−1B=14⎡⎢⎣713−19−111−11−17⎤⎥⎦⎡⎢⎣7−512⎤⎥⎦=14⎡⎢⎣49−5−36−133+5+132−77+5+84⎤⎥⎦=14⎡⎢⎣8412⎤⎥⎦
⇒x=2;y=1;z=3