wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of trigonometric equation cos4(x)+sin4(x)=2cos(2x+π)cos(2x-π) is


A

x=nπ2±sin-115

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

x=nπ4+-1n4sin-1±223

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

x=nπ2±cos-115

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

x=nπ2+-1n4cos-115

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

x=nπ4+-1n4sin-1±223


Explanation for correct option:

Given: cos4(x)+sin4(x)=2cos(2x+π)cos(2x-π)

cos2(x)2+sin2(x)2=cos(2x+π+2x+π)+cos(2x+π-2x+π)[2cos(a)cos(b)=cos(a+b)+cos(a-b)]cos2(x)+sin2(x)2-(2sin2(x)cos2(x))=cos(4x+2π)+cos(2π)[a2+b2=(a+b)2-2ab]1-2sin(x)cos(x)22=cos(4x)+1[cos(2π+x)=cos(x),cos(2π)=1]-sin2(2x)2=cos(4x)-1-cos(4x)2×2=cos(4x)[cos(2x)=1-2sin2(x)]-1+cos(4x)=4cos(4x)3cos(4x)=-1cos(4x)=-13sin(4x)=1-(cos2(4x))sin(4x)=1-132sin(4x)=1-19sin(4x)=±223

so, x=4+-1n4sin-1±223[sin(x)=sin(a),x=()+(-1)nsin-1(a)]

Hence, option B is correct.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon