The solution of trigonometric equation cos4(x)+sin4(x)=2cos(2x+π)cos(2x-π) is
x=nπ2±sin-115
x=nπ4+-1n4sin-1±223
x=nπ2±cos-115
x=nπ2+-1n4cos-115
Explanation for correct option:
Given: cos4(x)+sin4(x)=2cos(2x+π)cos(2x-π)
⇒cos2(x)2+sin2(x)2=cos(2x+π+2x+π)+cos(2x+π-2x+π)[∵2cos(a)cos(b)=cos(a+b)+cos(a-b)]⇒cos2(x)+sin2(x)2-(2sin2(x)cos2(x))=cos(4x+2π)+cos(2π)[∵a2+b2=(a+b)2-2ab]⇒1-2sin(x)cos(x)22=cos(4x)+1[∵cos(2π+x)=cos(x),cos(2π)=1]⇒-sin2(2x)2=cos(4x)⇒-1-cos(4x)2×2=cos(4x)[∵cos(2x)=1-2sin2(x)]⇒-1+cos(4x)=4cos(4x)⇒3cos(4x)=-1⇒cos(4x)=-13⇒sin(4x)=1-(cos2(4x))⇒sin(4x)=1-132⇒sin(4x)=1-19⇒sin(4x)=±223
so, x=nπ4+-1n4sin-1±223[∵sin(x)=sin(a),x=(nπ)+(-1)nsin-1(a)]
Hence, option B is correct.
A circle of radius 2cm is cut out from a square piece of an aluminium sheet of side 6cm. What is the area of the left over aluminium sheet?(Takeπ=3.14)