x2(dydx)2+xy(dydx)−by2=0Let x(dydx)=v
Re-writing the differentiate equation,
⇒(v)2+vy−by2=0⇒v2+vy−by2=0
factorizing the quadratic, (v+3y)(v−2y)=0
v=−3y or v=2y
⇒x(dydx)=−3y or x(dydx)=2y
⇒dyy=−3dxx or dyy=2dxx
⇒∫dyy=−3∫dxx or ∫dyy=2∫dxx
⇒y=c1x3 or y=c2x2
∴ We have two solutions y=cx2 or x3y=c