The correct option is A y2−x2=c(x2+y2)2
Given (x3−3xy2)dx=(y3−3x2y)dy...........(1)
Dividing LHS and RHS by x3 and taking yx equal to v we have,
dydx=v+xdvdx .....(2)
Using (2) in (1) we have,v+xdvdx=1−3v2v3−3v
⇒xdvdx=1−3v2v3−3v−v
⇒xdvdx=1−v4v3−3v
⇒x(v3−3v)dvv4−1=−dxx
Let v3−3vv4−1=Av+Bv2−1+Cv+Dv2+1
Now solving for A,B,C and D we have A=−1, C=2 and B=D=0
Hence we have, v3−3vv4−1=−vv2−1+2vv2+1
Now, ⇒∫(v3−3v)dvv4−1=∫−dxx
⇒∫(−vdvv2−1+2vdvv2+1)=∫−dxx
⇒12∫(−2vdvv2−1+4vdvv2+1)=∫−dxx
⇒ −ln|v2−1|+2ln|v2+1|=−2ln|x|+k
Now putting the value of v we have ,
(y2+x2)2x2(y2−x2)=cx2 where c is a constant.
Finally, y2−x2=c(y2+x2)2 where c is a constant.
Hence, option 'A' is correct.