1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integrating Factor
The solution ...
Question
The solution of
x
d
y
d
x
=
y
+
x
e
y
/
x
with
y
(
1
)
=
0
is:
A
e
y
/
x
+
ln
x
=
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
e
−
y
/
x
=
ln
x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
e
−
y
/
x
+
2
ln
x
=
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e
−
y
/
x
+
ln
x
=
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
e
−
y
/
x
+
ln
x
=
1
Given differential equation can be written as,
d
y
d
x
=
y
x
+
e
y
/
x
Substitute
y
=
v
x
⇒
d
y
d
x
=
v
+
x
d
v
x
So above diff. equation becomes
v
+
x
d
v
d
x
=
v
+
e
v
⇒
e
−
v
d
v
=
d
x
x
⇒
−
e
−
v
=
ln
x
+
c
, .........On integrating the above one
⇒
−
e
−
y
/
x
=
ln
x
+
c
⇒
−
1
=
0
+
c
⇒
c
=
−
1
use
y
(
1
)
=
0
Hence solution is,
e
−
y
/
x
+
ln
x
=
1
Suggest Corrections
0
Similar questions
Q.
x
d
y
d
x
+
2
y
=
l
n
x
then
e
2
.
y
(
e
)
−
y
(
1
)
=
?
Q.
Let
y
=
1
1
+
x
+
ln
x
, Then
Q.
If
y
=
ln
x
x
, then
d
y
d
x
will be