The correct option is C log((y+3)2+(x+2)2)+2tan−1y+3x+2=C
The intersection of y−x+1=0 and y+x+5=0 is (−2,−3).
Put x=X−2,y=Y−3
The given equation reduces to dYdX=Y−XY+X.
Putting Y=vX, we get
X=dvdX=−v2+1v+1
⇒(−vv2+1−1v2+1)dv=dXX
⇒12log(v2+1)−tan−1v=log|X|+constant⇒log(Y2+X2)+tan−1YX=constant⇒log(Y2+X2)+2tan−1YX=constant⇒log(y+3)2)+(x+2))+2tan−1y+3x+2=C