wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution(s) of the differential equation (dydx)2+2ycotx(dydx)=y2 is/are

A
y=c1sinx, where c is arbitrary constant
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=c1+sinx, where c is arbitrary constant
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=c1cosx, where c is arbitrary constant
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
y=c1+cosx, where c is arbitrary constant
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
C y=c1cosx, where c is arbitrary constant
D y=c1+cosx, where c is arbitrary constant
(dydx)2+2ycotx(dydx)=y2(dydx)2+2ycotx(dydx)y2=0

Assuming (dydx)=t, we get
t2+2ycotxty2=0t=dydx=2ycotx±4y2cot2x+4y22dydx=y(cotx±cosec x)

When dydx=y(cotx+cosec x), we get
dyy=(cotx+cosec x)dxdyy=1cosxsinxdxln|y|=2sin2x22sinx2cosx2dxln|y|=tanx2 dxln|y|=2lnsecx2+lnCy=C1sec2x2y=2C11+cosxy=c1+cosx

When dydx=y(cotxcosec x)
dyy=(cotx+cosec x)dxlny=1+cosxsinxdxln|y|=2cos2x22sinx2cosx2+lnCln|y|=cotx2 dx+lnCln|y|=2lnsinx2+lnCy=2C12sin2x2y=c1cosx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon