The correct options are
A (−∞,−2−√3)
B (−2+√3,∞)
log5(x2+4x+1) is defined for x2+4x+1>0
⇒(x+2)2>3
i.e., x∈(−∞,−2−√3)∪(−2+√3,∞)
We have,
1+log5(x2+1)≥log5(x2+4x+1)
⇒log55+log5(x2+1)≥log5(x2+4x+1)
⇒5(x2+1)≥x2+4x+1
⇒4x2−4x+4≥0
⇒x2−x+1≥0,⇒(x−12)2+34≥0
which is true for all x∈R
Hence, the solution set of the given inequality is
(−∞,−2−√3)∪(−2+√3,∞)