The correct option is A {12(√5−1)}
12log3(x+1)−log9(1−x)=log9(2x+3)
Above equation is valid when x+1>0,1−x>0,2x+3>0
⇒−1<x<1
12log3(x+1)−log9(1−x)=log9(2x+3)
⇒log3(x+1)−2log9(1−x)=2log9(2x+3)
⇒log3(x+1)−log3(1−x)=log3(2x+3)[∵mlogab=loga1/mb]
⇒log3(x+11−x)=log3(2x+3)[∵loga−logb=logab]
⇒x+11−x=2x+3
⇒x2+x−1=0
⇒x=−1±√52
Since, −1<x<1
Therefore, x=√5−12
Ans: A