The solution set of inequality (tan−1x)(cot−1x)−(tan−1x)(1+π2)−2cot−1x+2(1+π2)>limy→−∞[sec−1y−π2] is (where [.] denotes the greatest integer function)
Inverse circular functions,Principal values of sin−1x,cos−1x,tan−1x. tan−1x+tan−1y=tan−1x+y1−xy, xy<1 π+tan−1x+y1−xy, xy>1. Evaluate the following : (a) sin[π3−sin−1(−12)] (b) sin[π2−sin−1(−√32)]