The correct option is A (1000, ∞)
x(log10x)2−3(log10x)+1>1000
log is defined when x>0
Taking log with base 10 both sides
⇒[(log10x)2−3(log10x)+1]log10x>3
⇒(log10x)3−3(log10x)2+(log10x)−3>0
⇒[(log10x)2+1](log10x−3)>0
Since, 1+(log10x)2 is always positive
⇒log10x−3>0
⇒x>1000
∴x∈(1000,∞)