The correct option is C (−∞,2)
log1/3(2x+2−4x) is defined, if
2x+2−4x>0
⇒4(2x)−(2x)2>0
⇒2x(4−2x)>0
⇒4−2x>0⇒2x<4⇒x<2⇒x∈(−∞,2)...(1)
We have ,
log1/3(2x+2−4x)≥−2
⇒(2x+2−4x)≤(13)−2
⇒2x+2−(2x)2≤9
⇒4(2x)−(2x)2−9≤0
⇒(2x)2−4(2x)+9≥0
⇒(2x−2)2+5≥0
Which is true for all x∈R...(2)
From (1) & (2)
x∈(−∞,2).