The correct options are
A (3,π)
B (π,3π2)
D (π,5)−{3π2}
x2−8x+23>0
⇒(x−4)2+7>0 true ∀ x∈R
And |sinx|≠0,1
⇒sinx≠0,±1
⇒x≠…,−2π,−π,0,π,2π,…
and x≠…,−3π2,−π2,0,π2,3π2,…
Now, log2(x2−8x+23)log2|sinx|>3log2|sinx|
⇒log2(x2−8x+23)<3 (∵log2|sinx|<0)
⇒x2−8x+23<23⇒x2−8x+15<0⇒(x−5)(x−3)<0⇒x∈(3,5)
∴x∈(3,5)−{π,3π2}