The solution set of the equation 4sinθcosθ−2cosθ−2√3sinθ+√3=0 in the interval (0,2π) is-
4sin2θcosθ−2cosθ−2√3sinθ+√3=0
2cosθ(2sinθ−1)−√3(2sinθ−1)=0
(2sinθ−1)(2cosθ−√3)=0
sinθ=12,
cosθ=√32,
sinθ=sinπ6
θ=nπ+(−1)nπ6
θ=π6,5π6,13π6,17π6
cosθ=cosπ6
θ=2nπ±π6
θ=π6,11π6,13π6
θ={π6,5π6,11π6}